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THE PROBLEM WITH BUILT-IN SUPPORTS
A classic problem involves finding the maximum princi-
pal stress in a plate with a center hole. Two-dimensional
plane stress is assumed. Results show the highest stress
equal to 377 MPa, quite close to 370 MPa predicted by the
analytical solution. But 377 MPa is not the highest maxi-
mum principal stress in this model. The highest one is ac-
tually infinite. Why? Because the formula that predicts
370 MPa assumes tension is applied to both sides of the
plate, while our model shows the left vertical edge rigidly
constrained. The constrained edge tries to shrink side-
ways under the tensile load, the effect of Poisson’s ratio.

The tensile strip with a hole looks innocent
enough. It’s 200 � 100 mm, and 10 mm thick.
The hole is 40 mm diameter. Load is 100,000 N
in tension and the material has a modulus of
200,000 MPa and Poisson’s ration of 0.27.
Results are in following images.

Easily made errors 
mar FEA results 
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Even before you mesh a part,
you may have introduced 
the potential for erroneous
stresses and deflections.
Paul Kurowski
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E
very day brings news of powerful analysis
software for shortening development cycles.
Trying to keep pace with such progress
makes it easy to forget that all those great
programs provide accurate results only when

properly used. 
One of the stumbling blocks on the road to quick and

correct FEA results includes idealization errors, those
that come from simplifying the real world. They are
common yet often unrecognized and dangerous. In this
discussion of them, lets use the term finite-element
method (FEM), the foundation of FEA, because it em-
phasizes the underlying numerical method. 

It’s also useful to briefly review the four steps pres-
ent in any FEM project. Step one transforms boundary
conditions, material properties, and geometry into
terms acceptable for analysis. Simplifications are al-
most always necessary, but they introduce idealiza-
tion errors. Some are benign but others are hazardous.
And don’t be too smug if you’re using “advanced” soft-
ware because idealization errors have nothing to do
with mesh, elements, or the type of solver used. 

Mathematical models formed by simplifications and
containing idealization errors then take the form of
differential equations. These are usually too difficult
to solve analytically, so solvers use an approximate nu-
merical method. Most often we choose the FEM, which
has dominated engineering analysis because of its
adaptability and numerical efficiency. FEM requires
splitting the continuous model into discrete regions or
elements. Call this step two, another operation with
opportunity for errors.

Step three, the solution, leaves little opportunity for
user intervention. The software can introduce numeri-
cal round-off errors, but recent programming mini-
mizes their impact.

And in step four, after solving a model, you apply re-
sults to the design. At that time, it’s important to recall
the assumptions made during the simplifications and
meshing because they have influenced the results.

The boxes that follow show several particular ideal-
ization errors that are introduced in step one. And the
article avoids referencing FEM-specific issues, such as
elements and meshing, as much as possible. However
we must touch on the convergence process and the
idea of degrees-of-freedom in FEM models because
we’ll use those as tools to expose the problems of ideal-
izations. To illustrate the convergence process, the ex-
amples that follow are meshed and solved with a pro-
gram that uses p-elements, but the problems they il-
lustrate apply to all FEM-based analysis or any other
kind of numerical analysis for that matter.  

A plate in tension



A DOMINATING FAILURE MODE
Sometimes it’s easier to think of safety in terms of stress levels while
forgetting other issues. For example, while analyzing A curved I-beam
it is easy, yet deadly, to forget that buckling, not the stress, will define
the structure’s safety. 

With a little work, we could fill
this entire issue with examples of
modeling errors introduced during
the idealization process. Indeed,
reducing 3D models to 2D
representations, beam and shell
modeling, defeaturing and
geometry clean up, all that is done
to simplify models and allow
meshing. Each process abounds in
traps awaiting an unsuspecting
user. 

Modeling errors originate from
incorrect mathematical models.
Some modeling errors, such as
singularities, can be revealed (but
not cured) using the FEM-based
convergence process. Most remain
hidden. The only defense is full
understanding of the analyzed
problem.

But built-in supports prevent the
edge from “shrinking.” There-
fore, the mathematical model, as
shown in A closer look at the cor-
ners predicts infinite stresses in
both corners. (Infinite stress may
also be called singular stress.) 

Large elements, such as those
in Results for the test plate, let
the FEM model overlook high

stresses altogether. Even though
each iteration adds degrees of
freedom (dof) to the model, there
are still not enough dof to detect
those very localized stresses in
the two corners. A convergence of
the highest principal stress in
the chart Convergence for the
plate model refers to stress at the
hole, not to corner

stresses, and pro-
vides another ex-
ample of how cor-
ner singularities go
undetected.

A closer look at
the corners more
clearly shows that
placing small ele-
ments in corners
and using nonadap-
tive convergence,
reveals high corner
stresses. And the
graph Convergence
in the corner shows
how stresses there

grow with each iteration. It starts
high from the beginning. This is
because small elements can de-
tect stress concentrations even at
low p (polynomial) levels. Perhaps
most interesting is that stress
shows no signs of convergence.
Each consecutive iteration simply
produces higher stress. 
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Results for the test plate

Results for the plate show a high stress at the
hole boundary and in the corners. The
146 MPa is high enough to warrant further
investigation. A closer examination will reveal
that the 146 MPa found there is meaningless.

Convergence for 
the plate model

A plot of the highest maximum principle stresses for
the plate show stresses around the hole. 

Buckling is not obvious, but
it’s the dominating mode of
failure for the curved beam. 

A curved 
I-beam



So you might ask: Which model
is correct, Results for the test plate
or A closer look at the corners? An-
swer: Both are correct if we are in-
terested in stress around the hole,
but neither one is correct if we are
interested in corner stresses be-
cause those are singular, a condi-
tion that causes ever increasing

stress while adding more dof.
Consequently, the model can’t be
used for finding corner stresses.
Discretization (step two) just
masks singularities introduced in
step one, which become visible
only by looking for convergence —
one way to spot singularities. It
would be easy to produce results

showing 1,000 or 1 million
MPa stress. Just make the
corner elements small
enough. The same won’t hap-
pen around the hole. Stress in
singular locations (corners)
returned by the discrete FEM
models are purely discretiza-
tion dependent and therefore
completely unreliable. 

We should emphasize that
our plate with the center
hole illustrates benign ide-
alization errors introduced
in by a rigid support. We
had to hunt for singularities
and use the trick of very
small elements and non-

adaptive convergence to reveal
them. Benign singularities are
common and practically un-
avoidable. Even the following
test bracket is not free from
them. In practice, we either
don’t notice pesky stress concen-
trations or learn to ignore them,
but it is still worthwhile to re-
member about occasional trou-
bles caused by Mr. Poisson and
his ratio.

The square area behind the plate shows a
magnified corner element. It shows a high
stress hidden in the results of the previous
contour plot of the plate. Fortunately, this
singularity is benign and, most often, we can
just ignore it. 

A closer look at
the corners
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CAD Convergence
in the corner

The highest maximum principal stress in
the plate shows no signs of converging
to a finite value. Each subsequent
iteration produces higher stress. 

THE HAZARD OF MEMBRANE STIFFENING 
The next objective is to analyze a deflection in the model in A
flat, round membrane. Deflections won’t be more than
20 mm, which is small compared to the 1,000-mm diameter.
So we run a linear-static analysis which assumes small dis-
placements, another grave error. Results show a maximum
displacement of 35.5 mm, much more than from a physical
test. What went wrong? 

Small-displacement theory assumes
membranes don’t change stiffness as they
deform and so it accounts only for the ini-
tial bending stiffness. However, the ma-
terial under deformation acquires “mem-
brane stiffness”, which adds to the origi-
nal value for bending stiffness. As a re-
sult, the overall stiffness increases as the
membrane deforms. A nonlinear-geome-
try analysis, also called large-deforma-
tions analysis, is required even though
the displacement magnitude seems
small. The difference between results re-
turned by linear and nonlinear models
appears in the red and blue graph. 

Deflection
per theory

The red graph
assumes a large-
deformation
solution while the
blue graph
assumes small-
deformation theory.

A flat, round
membrane 

The membrane is supported around its diameter.
The material has E = 73,000 MPa and � = 0.33



SHARP RE-ENTRANT EDGES HINT 
AT STRONG STRESS SINGULARITIES
Idealization errors are not always mild. They often lead to hazardous
situations. For example, find the maximum principal stress in a simple
2D plane-stress model for an L-shaped bracket. The Maximum princi-
pal stresses seem acceptable. As expected, the highest stress is in the
corner. But is the maximum-principal stress really equal to 79 MPa?
Examining the chart Stress convergence in the L-shaped bracket hints
that something is wrong. Stress values climb with each iteration and
this time we don’t have to hunt diverging stress, we just use a standard
adaptive-convergence process. To find out what is going on, do as be-
fore: place smaller elements in areas of interest. A closer look at the
bracket shows a maximum stress of 415 MPa and again the conver-
gence curve relentlessly keeps climbing. Can we say which result better
approximates reality: 72 MPa or 415 MPa? No, they are the same —
they’re wrong. That’s because the correct FEM model created in step 2
is based on the wrong math model created in step 1. The area of interest
holds a singularity so no meaningful results can be produced.

As revealed by the convergence process, reducing element size and
upgrading element order lets us chase infinity — 415 MPa is just as far
away from infinity as 79 MPa. This time we can’t ignore the singularity
and still produce meaningful results because we are interested in stress
in the location where it’s singular. 

The remedy is to change the model. One way is to add a fillet, which
is always present in real parts anyway. You can also avoid stress singu-
larities by using a different material model, for example the elastic-
plastic model instead of a linear-elastic material. The elastic-plastic
material model would put an upper bound on stress, and instead of pro-
ducing meaningless high stress, a plasticity zone would be formed.

Geometric details, such as a fillet, are frequently difficult to mesh. A
technique called defeaturing removes such offending geometry to sim-
plify meshing. Defeaturing, however, can be dangerous. Take the Sup-
port bracket for example. If the indicated fillet is removed, the model
can still be used for deformation or modal analysis. It doesn’t have a dis-
placement singularity. Displacements are still finite despite the sharp
edge at the base of the center bosses. But removing a fillet creates a
sharp re-entrant edge constituting a stress singularity which makes it
improper and potentially dangerous for stress analysis. Remember,
stress results are meaningless around the sharp reentrant edges (the
arrow). This is the area of
most engineering interest in
the bracket. We can produce
stresses as low or high as we
want by manipulating ele-
ments size and order. Try it
yourself.

Convergence should deter-
mine whether or not the re-
sults are significantly dis-
cretization dependent. Only
when results converge can we
use them with confidence to
make design decisions. The
L-shape bracket demon-
strates the opposite: results
are entirely discretization de-
pendent and completely
meaningless.
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Stress results look plausible
and might fool us into
believing that 79 MPa is a
good answer. 

With small elements placed around
the sharp inside corner, the solver
now finds much higher stress. But is
this result closer to the truth than that
provided in the previous model? 

Maximum
principal
stresses

A closer look at
the bracket

It may be tempting to remove fillets
at the base of the center bosses for
easier meshing, but results could be
either meaningless or dangerous if
fillets are in the area of interest for
stress analysis. 

The highest maximum principal stress in
the L-shaped bracket shows no sign of
converging. 

A
support
bracket

Stress convergence
in the L-shaped

bracket



DISPLACEMENT SINGULARITIES
Singularities can also affect displacements.
Imagine a beam in bending supported at one
end by two welds, as in A cantilever beam. The
objective is to calculate stresses and deflec-
tions. Model geometry and boundary condi-
tions lend themselves to a 2D plane-stress rep-
resentation. Because the weld is small in com-
parison to the overall beam, we decide to
model them as point supports (a bad mistake)
surrounded by small elements to more pre-
cisely capture the local stress distribution.

A stress convergence curve (not shown) reveals a
problem: The curve is not converging. Clearly, this
model is not useful for stress analysis because
stresses are discretization dependent, that is, they
are singular. Notice again that the error in defini-
tion of the math model is revealed by the conver-
gence curve. Looking at results of just one single run
would have been misleading. So a useful stress
analysis is out of the
question. But can we use
the model for deflection
analysis? Displacements
for the cantilever beam
looks okay, and the maxi-
mum deflection is just
above 8 mm as predicted
by beam theory. How-
ever, a closer examina-
tion of the graph reveals
an unnerving fact: Its
curve is not converging.
Instead, it’s slowly but
surely increasing. How is
that possible? Point sup-
ports at the corner show
stress that tends to infin-
ity. In fact, the strain
also tends to infinity. Af-

ter all, it is proportional to stress. (The linear rela-
tion between stress and strain is expressed by
Hooke’s law, or � = E�) With strains tending to infin-
ity, displacements have no choice but to follow.

The model in A cantilever beam is completely
wrong. Point support is a cardinal sin of FEM
modeling. So why do all FEM programs include
point supports? Because they can be used to re-

strict rigid body movement —
when a support generates
zero reaction. Point supports
are also useful in beam-ele-
ment models.

One can conclude that both
types of modeling errors
(sharp re-entrant corners and
point supports) originate from
an improper definition of the
mathematical model upon
which the FEM model is con-
structed. But the errors have
nothing to do with FEM. We
committed them in step one
before FEM even entered the
scene. So the problems can’t be
fixed using FEM. Convergence
studies, however, can identify
the benign from the severe. 

STEPS IN FEM PROJECT
Step 1 Simplifications of reality

lead to a mathematical
model and introduce
idealization errors.

Step 2 Replacing a continuum with
a set of discrete regions
(meshing) introduces
discretization errors.

Step 3 The solution of a discrete
system introduces numerical
errors.

Step 4 Analysis of results
introduces interpretation
errors.

CAD

A FINAL WORD ON
CONVERGENCE
The convergence process adds degrees of
freedom to the FEM model to see how re-
sults change. Degrees of freedom are added
either by using more elements (mesh refine-
ment, called h convergence), or by using
higher-element orders (p-convergence).

Convergence should demonstrate that re-
sults converge to a finite value and, there-
fore, are not significantly dependent on the
choice of discretization. If the process shows
that results are significantly discretization
dependent, then the results are unreliable.

We want your
feedback.

Did you find this material
interesting? Circle 725
Do you want more 
information of 
this type? Circle 726

Comment via e-mail to
mdeditor@penton.com

What related topics would
you like to see covered?

What additional information
on this topic would you find

useful?
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Beam displacements are diverging to infinity, an
indicator of a singularity. 

Displacements
in the cantilever

beam

The cantilever beam has a material E = 200,000 MPa, � = 0.27,
and it’s 20 mm thick. 

A cantilever beam


